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Abstract. The paper considers an excitable Hodgkin-Huxley system subjected to a strong periodic forcing
in the presence of random noise. The influence of the forcing frequency on the response of the system is
examined in the realm of suprathreshold amplitudes. Our results confirm that the presence of noise has a
detrimental effect on the neuronal response. Fluctuations can induce significant delays in the detection of
an external signal. We demonstrate, however, that this negative influence may be minimized by a resonant
activation effect: Both the mean escape time and its standard deviation exhibit a minimum as functions of
the forcing frequency. The destructive influence of noise on the interspike interval can also be reduced. With
driving signals in a certain frequency range, the system can show stable periodic spiking even for relatively
large noise intensities. Outside this frequency range, noise of similar intensity destroys the regularity of
the spike trains by suppressing the generation of some of the spikes.

PACS. 87.10.+e General theory and mathematical aspects – 05.40.-a Fluctuation phenomena, random
processes, noise, and Brownian motion

1 Introduction

Investigations of neuronal models subjected to different
types of perturbations have received significant attention
in the last years [1]. It is widely acknowledged that sig-
nal processing in neural systems takes place in a noisy
environment. Hence, it is of interest to understand the
statistical properties of stochastic neuronal systems. In-
vestigation of the influence of noise on spike generation in
the presence of some external forcing signals is particu-
lar important, because noise plays a significant role in the
detection, transmission and encoding of such signals.

Recently, it has been demonstrated that the response
of neurons to a weak periodic forcing can be optimized
by a certain level of noise (the phenomenon of stochastic
resonance (SR)), and that the signal-to-noise ratio in this
case has a maximum for an optimal noise intensity [2–7].
It has also been shown that even without an external sig-
nal a similar behavior can be observed (the phenomenon of
coherence resonance (CR)), where the presence of noise re-
veals an inherent oscillatory tendency in the system [8–11].
In some systems this may be associated with a nearby su-
percritical Hopf bifurcation [8,12], for other systems CR
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can be interpreted as the response to noise excitation near
the bifurcation of a periodic orbit [9].

Both of the above resonant phenomena (SR and CR)
point to the possible beneficial effects of noise on the dy-
namics of nonlinear systems. Recent experiments on the
cricket cercal sensory system have shown that the fre-
quency of the subthreshold driving also plays a crucial
role [13]. A range of frequencies exists in which the signal
transduction of the neurons is most effective. This phe-
nomenon, called frequency sensitivity in weak signal de-
tection, was proposed to result from a resonance between
the intrinsic oscillation and the signal [14].

By examining the principal neuromodulatory features
of noisy subthreshold oscillations it has recently been
demonstrated that even small parameter variations can
profoundly alter the neuron’s output [15–17]. In particu-
lar, it has been shown that due to the selective stimulus-
dependent modulation of the oscillation frequency and the
spiking probability it is possible to optimize the encoding
sensitivity to various sensory modalities.

However, all of the above effects were observed for
the case of subthreshold forcing, when the driving signal
alone is insufficient to produce a response from the neuron
(i.e., to generate a spike). This situation seems to apply
most directly to cases where the neurons are unable to
adapt their response thresholds to changes in the external
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driving. But it is well known that many sensory neurons
do have adaptive capabilities [18]. Thus, the opposite case
of strong driving signals is equally important.

As demonstrated by several authors [19–21], if the am-
plitude of the external driving is suprathreshold, the pres-
ence of noise has a detrimental effect on the encoding pro-
cess: Noise always impairs the information transmission.
An exception are neuronal arrays, where noise, as recently
shown by Stocks [22,23], can significantly enhance the in-
formation transmission, and the effect of suprathreshold
stochastic resonance can be observed.

It is in this context that the problem of optimally
matched parameters of the external signal arises. Here,
the term “optimal parameters” relates to aspects such as
the detection of the external information, its subsequent
encoding, signal transmission, and so on. In the present
paper we focus on the first characteristic and analyze the
effect of noise on the time of external signal detection, i.e.
on the time of appearance of the first spike. Signals of var-
ious shapes and durations can obviously serve as stimuli
of a neuronal system. For simplicity, we consider a single
neuron subjected to a strong periodic forcing and study
the delay of the system’s response in dependence on both
the driving frequency and the noise intensity.

We observe that the effect of frequency selection also
exists in the case of suprathreshold driving and that it
takes the form of a resonant activation effect [24,25]: The
mean time of appearance for the first spike has a mini-
mum as a function of driving frequency. Thus, less time is
needed for the appearance of a response for a certain range
of driving frequencies. Moreover, for small enough noise
intensities this time changes weakly in the near-resonance
region where the standard deviation of the escape time
also has a minimum. Both of these facts suggest, that the
ability to detect signals by a neuron can be significantly
improved when the frequency of the signal falls in a par-
ticular range.

In a couple of recent studies [26,27] the phenomenon
of noise-delayed decay has been described. In this case the
escape time becomes larger with increasing noise intensity.
We show that this phenomenon can also be observed for
the neuron model, but that the delay due to the noise can
be minimized within a certain frequency range.

Finally, we briefly show that similar effects are ob-
served not only for the time of appearance of the first
spike, but also for the sequence of subsequent spikes. With
driving signals in a certain frequency range, the system
can show stable periodic spiking even for relatively large
noise intensities. Outside this frequency range, noise of
similar intensity destroys the regularity of the spike trains
by suppressing the generation of some of the spikes. A
study of this phenomenology, which is directly related to
the information processing in neuronal systems, is cur-
rently in progress.

We emphasize that the phenomena considered in the
present paper are qualitatively different from the well-
known SR and CR effects [27] and that they arise for a
range of forcing amplitudes where these effects cannot oc-
cur [23].

2 The model

The dynamic equations for the Hodgkin-Huxley model [28]
to be considered in this paper are identical to those used
by Keener and Sneyd [29]:

Cmυ̇ = −GKn4(υ − υK) − GNam
3h(υ − υNa)−

− GL(υ − υL) + s(t) + ξ(t),
ṁ = αm(1 − m) − βmm,

ḣ = αh(1 − h) − βhh,
ṅ = αn(1 − n) − βnn.

(1)

Here, υ measures the deviation of the membrane po-
tential from its equilibrium value (V = Veq + υ) in units
of mV, m and h are the activation and inactivation vari-
ables of the sodium current, and n is the activation vari-
able of the potassium current. The parameters GNa =
120 mS/cm2, GK = 36 mS/cm2, and GL = 0.3 mS/cm2

are the maximal conductances for the sodium, potassium
and leakage channels, respectively, and υNa = 115 mV,
υK = −12 mV, and υL = 10.6 mV are the correspond-
ing reversal potentials. The capacity of the membrane is
Cm = 1 µF/cm2. The specific voltage-dependent functions
α and β proposed by Hodgkin and Huxley were, in units
of (ms)−1, [29]:

αm = αm0

υ1 − υ

exp
(

υ1−υ
ϑm1

)
− 1

, βm = βm0 exp
( −υ

ϑm2

)
,

(2)
with αm0 = 0.1 (mV ms)−1, υ1 = 25 mV, ϑm1 = 10 mV,
βm0 = 4 (ms)−1, and ϑm2 = 18 mV.

αh = αh0 exp
(−υ

ϑh1

)
, βh =

βh0

exp
(

υ2−υ
ϑh2

)
+ 1

, (3)

with αh0 = 0.07 (ms)−1, ϑh1 = 20 mV, βh0 = 1 (ms)−1,
υ2 = 30 mV, and ϑh2 = 10 mV.

αn = αn0

υ3 − υ

exp
(

υ3−υ
ϑn1

)
− 1

, βn = βn0 exp
( −υ

ϑn2

)
, (4)

with αn0 = 0.01 (mV ms)−1, υ3 = 10 mV, ϑn1 = 10 mV,
βn0 = 0.125 (ms)−1, and ϑn2 = 80 mV.

Neuronal systems can be stimulated by a number of
different signals from the external world. Here, we con-
sider the case where the neuron is subjected to a strong
periodic signal s(t) = A sin(2πft + ϕ), and define s(t)
to be suprathreshold if a response is observed from the
system even in the noise-free case. Besides such determin-
istic signals, there are numerous noise sources [31]. The
occurrence of many uncorrelated synaptic events will de-
liver a total current to the neuron, which may be expected
to approximately approach a Gaussian distribution at the
soma [30,31]. Accordingly, the total noise input ξ(t) to
the neuron can be modeled as a white Gaussian noise
with zero mean 〈ξ(t)〉 = 0 and the correlation function
〈ξ(t)ξ(t + τ)〉 = Dδ(τ) and added to the system (1) as an
additive fluctuating current.
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Fig. 1. Firing and non-firing regions for the deterministic case
for ϕ = 0. The region above the bold black curve corresponds to
suprathreshold signals. Here, the time needed for the appear-
ance of the response (in ms) is marked according to the gray
scale shown to the right. Sinusoidal driving with the amplitude
A = 4 µA/cm2 within the frequency range f ∈ [16 ÷ 149 Hz]
is suprathreshold. Note the dramatic increase of the required
amplitude at low driving frequencies.

In the absence of stochastic inputs, the region of re-
sponse from the system for ϕ = 0 is illustrated in Figure 1.
The minimum threshold value of the driving amplitude re-
quired for spike generation is seen to be ∼1.5 µA/cm2 and
to occur around 60 Hz. In the following, investigations of
the influence of noise on the behavior of the nerve system
subjected to a signal of amplitude A = 4 µA/cm2 will be
presented.

In our simulations we assume that the initial condi-
tions for each realization are the same, namely that the
system is in its stable equilibrium point (the rest state)
(υ0, m0, h0, n0) at the initial time t0. In the following, we
will refer to the mean time of appearance for the first
spike as the mean escape time (MET). As illustrated in
Figure 2, MET is obtained by averaging the time of the
first passage [32] of the boundary υ = 20 mV over an
ensemble of N noise realizations [3]:

T = 〈t〉 = lim
N→∞

1
N

N∑
i=1

ti. (5)

Here, ti is the appearance time of the first spike for the
ith realization. This parameter characterizes the delay of
the system’s response, and has a non-zero value even in
the deterministic case because of the non-instantaneous
neuronal response. Noise can increase the escape time and
lead to an additional delay of the signal detection.

We have also considered the mean square deviation of
the escape time

σ =
√
〈t2〉 − 〈t〉2 (6)

that allows us to detect the region, where the most effec-
tive noise suppression occurs. The second moment

〈
t2

〉
is

defined in a manner analogous to equation (5).
Further, assuming that the driving signal initially

grows so that the dynamical threshold decreases, we take
ϕ = 0 in the sinusoidal driving term. In this case all
characteristics have been obtained as the ensemble aver-
age over many realizations of the noise, see equations (5)

Fig. 2. Calculation of the escape time ti from the first crossing
of the detection boundary at 20 mV by the membrane poten-
tial υ. The applied periodic modulation is shown as a black line.
Values of the parameter set are: A = 4 µA/cm2, f = 18 Hz,
ϕ = 0, and D = 0.5.

and (6). If the input initial phase ϕ is unknown from the
experiment then an additional phase-averaging may be
performed

Tϕ = 〈T 〉ϕ . (7)

Here, the variable T inside the brackets is the ensemble
averaged escape time as defined by equation (5). Follow-
ing [3], the phase-averaged standard deviation of the es-
cape time may be calculated from

σϕ = 〈σ〉ϕ =
〈√

〈t2〉 − 〈t〉2
〉

ϕ

, (8)

where the inner brackets denote the average over the en-
semble of the noise realizations and outer brackets indicate
the average over the initial phase ϕ.

3 Main results

In the following analysis we focus on the time of gener-
ation for the first spike and, in particular, on the role of
noise in the response ability of our system. However, let us
start by demonstrating a couple of relatively long voltage
traces containing several periods of an external driving.
Here, the manifestation of similar effects for another char-
acteristic time of neuronal activity known as the inter-
spike interval, is possible. Such a generalization allows us
not only to illustrate the phenomena observed in the fol-
lowing but also to show their significance in the different
stages of external signal processing, such as detection, en-
coding and its subsequent transmission. The study of the
influence of noise on the interspike interval in the presence
of suprathreshold external signal, including queries of re-
liability and precision of signal processing, is currently in
progress.

Figure 3 presents the temporal variation of the mem-
brane potential in the absence of noise and when noise of
two different intensities, D = 0.1 and D = 1, is added.
Parameters of the periodic driving are: A = 4 µA/cm2,
f = 140 Hz, and ϕ = 0. With these parameters our
system is subjected to a suprathreshold signal (Fig. 1)
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Fig. 3. Voltage profiles induced by an external suprathreshold
periodic signal of amplitude A = 4 µA/cm2 for different values
of the noise intensity: (a) D = 0, (b) D = 0.1, and (c) D =
1; f = 140 Hz. Note, the characteristic phenomenon of spike
skipping as the noise intensity increases. The corresponding
periodic modulation is shown in (d).

Fig. 4. Voltage profiles induced by an external suprathreshold
periodic signal with A = 4 µA/cm2 for different frequencies:
(a) f = 18 Hz, (c) f = 60 Hz, and (e) f = 140 Hz. The
corresponding periodic modulations are shown in (b), (d), and
(f), respectively. D = 0.5. The phenomenon of spike skipping
is practically absent for f = 60 Hz. For f = 140 Hz, only about
23% of the potential spikes are realized.

and, as a consequence, a periodic chain of spikes is ob-
served. Note, however, that due to the finite response time
and the refractive period that follows each spike, only
1/3 of the potential spikes are realized. In the presence
of noise a disruption of this periodicity occurs and the
skipping of spikes increases with increasing noise inten-
sity. This destructive role of fluctuations in the presence
of a suprathreshold signal is well-known and it has been
demonstrated both experimentally [13] and in computa-
tional models [19,21] by several authors.

The idea of the present analysis is to demonstrate
that the negative influence of noise can be effectively sup-
pressed. With this aim the influence of noise on the process
of spike generation is presented in Figure 4 for three differ-
ent values of the driving frequency f = 18 Hz, f = 60 Hz,
and f = 140 Hz with D = 0.5. All three signals are
suprathreshold (Fig. 1) and, in the deterministic case in-
duce regular periodic spike generation. As illustrated in

Fig. 5. Bifurcation plot of realized escape times versus driv-
ing frequency for the deterministic case D = 0 (a) and for
D = 0.5 (b). Dashed lines correspond to the following func-
tions (bottom-up): tq = 0.25/f , tq + Ts, and tq + 2Ts, where
Ts = 1/f is the period of sinusoidal driving.

Figure 3, noise suppresses the generation of some spikes,
but this effect is observed only for low and high frequen-
cies. In a certain frequency range around f = 60 Hz, the
system demonstrates stability to noise: A periodic chain
of spikes, as for D = 0, is observed, and each period of the
forcing signal produces one spike.

The above examples allow us to understand the role of
fluctuations in the process of spike generation in a broader
perspective. Let us now return to the main subject of
the present paper, to the examination the response ability
of our system, and consider the appearance time for the
first spike (escape time) in the simultaneous presence of a
suprathreshold signal and noise.

Figure 5 shows computed values of the escape times
as function of the driving frequency for D = 0 (a) and
D = 0.5 (b), respectively. Since excitations generally occur
in the first quarter part of the forcing period tq = 1/4f ,
during which the driving signal increases to its highest
value, we have plotted tq along with values of tq shifted
by one and two periods as dashed curves in the diagrams
for the realized escape times. Due to the delayed response
of the system, the dashed curves do not coincide with the
computed escape times as defined in Figure 2. If the fre-
quency of the periodic driving is low (but f > 18 Hz),
then the speed at which the signal changes in the input
of the system is smaller than in the output. For such
frequencies the escape times and the time of excitation
only differ slightly from one another in comparison with
tq. At high frequencies (but f < 146 Hz), on the other
hand, the periodic signal changes quickly, and the es-
cape times noticeably differ from the times of excitation
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Fig. 6. Mean escape time (a) and standard deviation (b) as functions of the driving frequency for A = 4 µA/cm2.

Fig. 7. Phase-averaged mean escape time (a) and standard deviation (b) as functions of the driving frequency for A = 4 µA/cm2.

that occur close to tq. Here, several quarters of a period
of the sinusoidal driving can be passed before the mem-
brane potential reaches the value υ = 20 mV. For the
frequencies near the boundaries of the suprathreshold re-
gion (f ∈ [16÷ 18 Hz) or f ∈ (146÷ 149 Hz]), the system
cannot respond within the first period of the driving. Sig-
nals with these frequencies may be detected only during
the second, third etc., period.

By inducing the skipping of spikes, noise destroys the
regular structure. However, it can easily be seen from Fig-
ure 5b that a frequency band exists where the influence
of noise is minimal. In the interval f ∈ (30 ÷ 80 Hz),
even relatively large values of the noise intensity leave the
system’s response nearly unaffected, while outside this fre-
quency range noise leads to a multimodal distribution of
the escape times. Here, the system’s response is sensitive
to noise, and fluctuations play an essential role.

Let us now focus on the ensemble-averaged escape
times and consider the dependence of the mean escape
time (MET) on the frequency of an external periodic forc-
ing. The existence of a frequency range, where MET dis-
plays a minimum is illustrated in Figure 6a. Note, that
a similar effect of resonant activation has recently been
observed by Pankratov et al. [25] for a system with a
metastable state subjected to a strong periodic driving.

From Figure 6a we can estimate, that the minimum of
MET occurs in the range FT : f ∈ (90÷120 Hz). Near the
left boundary of FT a merging of curves in the resonant
regions for small noise intensities D is observed. Here the
curves tend to the limit of the deterministic case D = 0.

Thus, the deterministic escape time gives a good estimate
for the time of spike generation in a certain range of fre-
quencies and noise intensities.

The mean-square deviation of the escape time in de-
pendence of the driving frequency for A = 4 µA/cm2 is il-
lustrated in Figure 6b. Inspection of the figure shows that
the standard deviation of the escape time also demon-
strates a resonance-like behavior, and that the minimum
of this characteristic is in Fσ: f ∈ (60 ÷ 90 Hz). Con-
sequently, the effect of noise is significantly reduced in a
frequency interval slightly below the region of the fastest
response FT . This is one of our main results. It implies that
signal detection will be more effective in the frequency
range that corresponds to the overlap of the regions FT

and Fσ (near f = 90 Hz). Here, the most optimal com-
bination of the response time and the noise suppression
occurs.

All of the above results have been obtained for zero
initial phase of the external forcing. The phase exercises a
significant influence on the generation time of the response
from the system. However, in some situations information
about the phase of the driving signal is not accessible from
the experiment, and phase averaged characteristics have to
be used. Hence, we will now consider the phase-averaged
MET, Figure 7a, and the phase-averaged standard devia-
tion of the escape time, Figure 7b.

As we can see from Figure 7a, this additional aver-
aging leads to an increase of the escape times for all in-
vestigated driving frequencies. Qualitatively, however, the
phase-averaged MET displays a similar behavior as in
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Fig. 8. Mean escape time as function of noise intensity for
different values of the driving frequency: (a) f = 20 Hz, (b) f =
70 Hz, (c) f = 90 Hz, (d) f = 110 Hz, and (e) f = 140 Hz;
A = 4 µA/cm2. Line with circles corresponds to the case of
phase-averaged MET for f = 20 Hz.

Figure 6a. Thus, a robustness of the resonant activation
effect to the phase averaging procedure is observed.

Further, let us fix five values of driving frequency:
(i) near the left end of suprathreshold region: f = 20 Hz,
Figure 1; (ii) within the region Fσ: f = 70 Hz, Figure 6b;
(iii) f = 90 Hz; (iv) within the region FT : f = 110 Hz,
Figure 6a; (v) near the right end of suprathreshold region:
f = 140 Hz.

The behavior of the mean escape time for noise inten-
sities in the range D ∈ [10−4; 102] is presented in Figure 8.
All curves on this figure have a resonant-like shape, and
the range of noise intensities can be separated into three
regions where different types of behavior for MET exist.

Below a certain value of the noise intensity, the sys-
tem is weakly sensitive to changes of D. Here the curves
in Figure 8 are nearly horizontal. This means that the fluc-
tuations are suppressed by the strong external signal and
that the necessary time for the generation of a response
in the system for the considered noise intensity deviates
only weakly from the escape time in the absence of noise.

With further increase of the noise intensity a growth
of the MET is observed. Here, noise leads to a delay in
the external signal detection. Such an increase of the es-
cape time due to the effect of fluctuations was previously
observed in potential systems by Mantegna et al. [26,27],
and is known as the phenomenon of noise-delayed decay
(NDD). To our knowledge, Figure 8 is the first example
of NDD in excitable systems.

When the maximal delay of the system’s response is
reached, the role of the inverse probability current de-
grades [27], and further increase of the noise intensity de-
creases the mean escape time. Such a behavior is usual for
thermal activation processes: Noise destroys metastable
states that in the absence of noise would exist infinitely
long time.

Here it is worth noticing that even in the absence of
noise the system will be firing for a certain frequency
range, because it is subjected to a suprathreshold signal.
In this case noise prevents the escape, and the system
needs more time to detect the input signal. It is easy to

see from Figure 8 that near the boundaries of the consid-
ered frequency range (f = 20 Hz and f = 140 Hz that
corresponds to curves (a) and (e), respectively), larger
noise induced delays occur. Here, MET can be signifi-
cantly increased by fluctuations in comparison with the
deterministic case: ≈ 294% for f = 140 Hz and ≈ 193% for
f = 20 Hz. By contrast, the choice of the driving frequency
within the suprathreshold region (FT or Fσ) can help min-
imize the delay of an input signal detection. In particular,
near the minimum of σ, for f = 70 Hz (curve (b)), the in-
crease of MET does not exceed ≈ 19%. But the response
time for small D here is not the smallest: tD=0 ≈ 4.7 ms.
As argued above, signal detection will be more effective
in the frequency range that corresponds to the overlap of
the two regions FT and Fσ (f = 90 Hz, for example).
Here, the most effective combination of the response time
(tD=0 ≈ 4.4 ms) and the noise suppression (≈33%) exists
(see curve (c) in Fig. 8).

A similar behavior of the phase-averaged escape time
was also obtained. Here, the effect of noise-delayed de-
cay is not so well pronounced (line with circles in Fig. 8).
Moreover, for some frequency values the complete disap-
pearance of the effect was observed. This additional av-
eraging procedure minimizes the role of fluctuations (the
increase of MET does not exceed ≈ 10% for f = 20 Hz),
but, at the same time, leads to an increase of the system’s
mean response time for both small and large values of the
noise intensity in comparison with curve (a) in Figure 8.

4 Conclusions

A stochastic Hodgkin-Huxley model was used as a vehi-
cle to investigate the effect of noise on the response of
an excitable system in the presence of a suprathreshold
periodic driving signal. In this situation, noise is known
to have a detrimental effect on the information transfer.
However, we showed that this destructive effect exhibits
new types of resonant phenomena, related to the delay in
the neuronal response and the refractive period following
a spike. In particular, the negative influence of noise can
be significantly minimized for a certain parameter values.
We have demonstrated the phenomenon of resonant ac-
tivation, namely, MET has a minimum as a function of
the frequency of the external forcing. It was shown that
near the resonance region the system is weakly sensitive to
changes of the noise intensity (for small D), i.e., small de-
viations of the membrane potential only change the time
of spike generation slightly in this frequency range. In ad-
dition, the standard deviation of the escape time exhibits
a minimum here. This is the range that is most useful for
signal detection.

The effect of noise-delayed response was also observed.
Noise increases the system’s response time for all frequen-
cies of the strong driving: The MET has a maximum as
a function of noise intensity. But we have shown that the
choice of a certain frequency range makes it possible to
minimize the delay in signal detection. The influence of
the phase-averaging procedure was examined for all of the
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above mentioned effects. It was shown that resonant ac-
tivation effect displays a robustness to this procedure. In
contrast, the effect of noise-delayed response demonstrates
high sensitivity to the phase averaging and, for some fre-
quency values, can practically vanish.

We have also shown, that the destructive influence of
noise on the interspike interval can be reduced. With driv-
ing signals in a certain frequency range, the system can
show stable periodic spiking even for relatively large noise
intensities (in comparison with the threshold value). Out-
side this frequency range, noise of similar intensity de-
stroys the regularity of the spike trains by suppressing the
generation of some of the spikes. Thus, the results ob-
tained in the present paper are significant not only for
the detection of external information, but also within the
context of its further processing by the nerve cell.
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